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Abstract

Conventional wisdom states that TCP performs poorly
when packets arrive out of order. Reordered packets in-
teract poorly with TCP’s fast retransmit mechanism. For
this reason, multipath routing is rarely used in the In-
ternet, although it is supported by routers and routing
protocols. Data center networks are very different from
the Internet, having regular topologies, high-capacity-
low-latency links, and switches with very small packet
buffers. Per-packed load balancing would be extremely
efficient in data center networks, eliminating the need to
schedule the paths of individual TCP flows and the need
to maintain per-flow state in each switch. In this paper,
we survey techniques for making TCP more robust to
packet reordering, in the hope of making per-packet load
balancing a reality.

1 Introduction

Data center networks are LANs that interconnect hun-
dreds to thousands of compute and storage nodes. They
are typically Ethernet networks, using gigabit links be-
tween nodes and switches, and 10 gigabit links between
pairs of switches. On top of Ethernet, the TCP/IP pro-
tocols are commonly used, perhaps because data centers
often host web applications and web services. Recently,
a new class of data center applications has emerged;
MapReduce [13], and the associated open-source project
Hadoop, are programming systems that enable large-
scale computations across thousands of nodes. MapRe-
duce works best for embarrassingly parallel problems
that do not require nodes to exchange intermediate com-
putations on small timescales, but do require massive
network capacity to exchange terabytes to petabytes of
data over the course of hours.

Current data center network fabrics cannot provide the
capacity to satisfy the demand of these large MapRe-
duce installations. Typically, data center networks are

structured as multi-rooted trees for capacity scaling, load
balancing, and fault tolerance [1]. The roots of these
trees are large, proprietary, modular packet switches, of-
ten with a cost of over $10,000 per port for 10 giga-
bit Ethernet. Besides the restrictive price, these packet
switches are also difficult to scale beyond their current
size. They use single-stage crossbar architectures that
scale with complexityO(n2), wheren is the number of
ports.

This demand for network capacity has generated inter-
est in redesigning data center network fabrics. The HPC
community has successfully used the fat-tree [26] net-
work topology for massive bandwidth scaling, and it has
been proposed to do the same for data center Ethernet
networks [1]. Figure 1 shows an example fat tree net-
work; the networks proposed for data centers are much
larger than this. Redesigning data center networks as fat
trees raises many research questions, such as how to cope
with the cabling complexity, how to treat the network as a
single Layer 2 domain while still maintaining path diver-
sity, and how to schedule TCP flows through the network
to avoid congestion. It is this last question that is related
to the topic of this paper1.

With a fat-tree network topology, there are multiple
equal-length paths between any pair of nodes, and pack-
ets could take any of these paths. Although IP is a best-
effort protocol and does not guarantee in-order packet
delivery, every switch and router architecture goes to
great pains to enforce in-order delivery internally. This
could be seen as the sacred cow of switch design: “never
ever, ever reorder packets.” Why is this? The primary
reason is that TCP performs poorly when packets are
received out of order. Even the reordering of a single
packet once per second is enough to significantly degrade
the throughput of a TCP flow in the wide area. In some

1In a recent research exam, Al-Fares surveyed on the area oflocal—
network load balancing while maintaining packet ordering. In contrast,
we argue that load balancing is trivial if packet ordering isnot main-
tained.
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Figure 1: An example fat-tree network.

sense TCP violates the end-to-end principle [40] by as-
suming in-order delivery, when IP makes no such claim.
The full story is given in section 2.

What if TCP was robust against reordered packets?
We argue that this would greatly simplify network de-
sign. The alternative is to schedule and constrain each
TCP flow to a single path through the network so that
packets do not arrive out of order. TCP flow schedul-
ing has many challenges. First, switches are required to
maintain state proportional to the number of TCP flows,
which is O(n2) wheren is the number of hosts. Sec-
ond, a logically centralized TCP flow scheduler is re-
quired that will periodically poll the switches for flow
information. The delay in this control loop will lead to
inefficiencies and overcompensation for some traffic pat-
terns. There are stateless hash-based techniques, but they
do not scale to networks as large as the ones we pro-
pose [18,43].

Although TCP flow scheduling is the subject of on-
going research, we propose to use packet scheduling in-
stead. With packet scheduling, each switch indepen-
dently decides on the upward path of each packet, re-
gardless of the final destination. Switches can choose
any upward port, since just as all roads lead to Rome, all
upward ports lead a root switch, which will then lead to
the final destination. We expect simple policies such as
least loaded port, least-used port, and uniform random,
to provide good performance without the need of a cen-
tral flow scheduler or maintaining any per-flow state in
the switches.

We propose a radical shift in thinking in which we
gladly accept massive amounts of packet reordering in
exchange for a much simpler, less costly, and higher-
performing network architecture. To our knowledge, no
one has attempted to use TCP under such extreme condi-
tions as we propose, in which packet reordering will be
the common case. Requiring that routers and packet pro-
cessors maintain packet ordering means that routers must
be non-work-conserving, which means that they are less

efficient than work-conserving routers and packet pro-
cessors that are allowed to reorder packets. The ultimate
goal of this work is to simplify network architecture to
reduce the cost and power consumption of data center
networks, while providing a very scalable technique for
meeting future data center network capacity demands.

This paper surveys the area of TCP performance un-
der packet reordering. Section 2 provides more back-
ground on why packet reordering leads to poor TCP per-
formance. Section 3 presents the results of several In-
ternet measurement studies that quantify how prevalent
packet reordering is in real networks. Sections 4 and
5 describe the various solutions proposed in the litera-
ture, and the systems which implement those solutions,
respectively. Finally, section 7 proposes experiments that
could be conducted to shed light on packet reordering in-
side data center networks.

1.1 Glossary of Terms

ACK A TCP acknowledgement. A TCP receiver trans-
mits an ACK to the TCP sender after the receipt of a
data segment. In TCP, ACKs are positive acknowl-
edgements, and the absence of an ACK is used by
the sender as an indication of packet loss (either the
data segment or the ACK) [39].

AIMD Additive Increase Multiplicative Decrease. A
strategy used in the congestion avoidance state
where a sender increases the number of packets in
flight by one after every RTT, but reduces the num-
ber of packets in flight by a factor of two after
packet loss [23].

Congestion Avoidance The steady state in the TCP
state machine. During congestion avoidance, the
sender uses AIMD to probe for spare network ca-
pacity, while using packet loss as an indication of
congestion to quickly reduce the offered load [2].

Congestion Collapse A state where all router buffers in
the network have filled and most transmitted pack-
ets are eventually dropped before reaching their des-
tination [33].

Congestion Window (cwnd) A TCP state variable. The
TCP sender may not have more segments in flight
than size of the congestion window. The slow start,
congestion avoidance, and fast recovery states all
update the congestion window when events occur,
such as the receipt of an ACK, a DUPACK, or a
timeout [2].

Cumulative ACK An ACK will acknowledge all sent
data up to the sequence number in the ACK. If a pre-
viously transmitted ACK is lost, then the next trans-
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mitted ACK will acknowledge the data that was also
acknowledged in the lost ACK. This increases ro-
bustness [39].

Delayed ACK A TCP receiver may choose not to trans-
mit an ACK after each received data segment, but
may choose to wait up to 200 ms or after the receipt
of two data segments, whichever comes first. This
reduces network congestion but makes TCP less re-
sponsive [10].

DSACK Duplicate selective acknowledgement. An ex-
tension of SACK; DSACK allows a receiver to ex-
plicitly notify a sender when a duplicate segment
was received. Duplicate segments are most often
received due to spurious retransmissions. DSACK
allows a sender to unambiguously detect spurious
retransmissions, except for the very rare case of
packet duplication in the network [30].

DUPACK Duplicate acknowledgement. When a re-
ceiver receives a data segment that is later than the
next expected segment, then the receiver retransmits
the last sent acknowledgement, hence a duplicate
acknowledgement. The sender can use the receipt
of duplicate acknowledgements as an early indica-
tion of packet loss [39].

Duplicate Threshold (dupthresh) TCP Reno hard-
codes the number of DUPACKs required to trigger
fast retransmit as 3. Some TCPs change this
constant number to a variable, named dupthresh,
and use this variable as an estimator of packet
reordering in the network.

Fast Recovery A state in the TCP state machine. TCP
enters the fast recovery state after a fast retrans-
mit event, and then enters the congestion avoidance
state after the receipt of a regular acknowledgement,
or the slow start state after a timeout [2].

Fast Retransmit When a TCP sender receives a se-
quence of three identical duplicate acknowledge-
ments, it assumes that a segment was lost and im-
mediately retransmits the lost segment. The sender
also reduces the slow start threshold and congestion
window [2].

Frame An Ethernet frame. We use the terms frame,
packet, and segment interchangeably.

IP Internet Protocol [37].

Limited Transmit An extension to fast retransmit that
allows a sender to transmit data segments after the
receipt of the first two (of possibly three) identical
duplicate acknowledgements. These extra packets

are useful for TCPs that use dupthresh, since more
packets increase the chance of exceeding dupthresh
when a packet loss has occurred. Without limited
transmit, a TCP that uses dupthresh would be more
likely to timeout and enter slow start [16].

Packet An IP packet. We use the terms frame, packet,
and segment interchangeably.

RTO Retransmission Timeout. A TCP sender’s RTO
timer is based on an estimate of the RTT of con-
nection [39].

RTT The round-trip time of a TCP connection; the
amount of time it takes for a sender to transmit a
data segment to the receiver and for the receiver to
transmit an ACK to the sender [39].

Segment TCP provides the application with the abstrac-
tion of an in-order byte stream. TCPsegments
this byte stream into contiguous arrays of vary-
ing lengths, subject to a maximum segment size
(MSS) [39]. We use the terms frame, packet, and
segment interchangeably.

Sequence Number Each TCP segment carries a se-
quence number, with segments sent later having
larger sequence numbers. This allows a receiver to
acknowledge individual segments by reporting back
the sequence numbers [39].

Slow Start The initial state in the TCP state machine
when a new connection is established. During slow
start, the sender’s offered load starts at one packet,
and increases exponentially in proportion to the
connection’s RTT. This allows an efficient way to
estimate the capacity of the path. Once a packet is
lost, the TCP state machine transitions into the con-
gestion avoidance state [2].

Slow Start Threshold (ssthresh) A TCP sender state
variable used to determine whether to enter the slow
start state or the congestion avoidance state [2].

SACK Selective acknowledgement. Allows a TCP re-
ceiver to notify the sender as to which data segments
have been received. A sender can use this informa-
tion to retransmit only data segments that have not
yet been received [29].

Spurious Retransmission When a TCP sender retrans-
mits a segment that was assumed to be lost, but was
actually just delayed by the network [27].

TCP Transmission Control Protocol [39].
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2 A Brief History of the TCP Packet
Reordering Problem

The Transmission Control Protocol was first described
in a 1974 paper by Cerf and Kahn [12]. It is surprising
how much of the original design still exists in modern
TCP/IP, such as IP packet fragmentation, TCP segmen-
tation and reassembly, multiplexing and demultiplexing
among multiple processes, segment retransmission, du-
plicate segment detection, sliding window flow control,
and the three-way handshake for connection establish-
ment. In the original design, both TCP and IP were
merged into a single layer, and did not become sepa-
rate layers until 1978. Although layering was understood
during this time [14], it wasn’t until the introduction of
the OSI model [46] in 1980 that layering became a fun-
damental principle of network protocol design. TCP was
finalized in 1981 [39]; we refer to this version as TCP
Postel.

2.1 Congestion Control

Interestingly, TCP Postel says nothing about conges-
tion control, only flow control. Flow control prevents
a sender from transmitting more packets than a receiver
can properly receive, without leading to buffer overflow
and dropped packets in the receiver. In contrast, con-
gestion control prevents all senders in aggregate from
transmitting more packets than the Internet routers can
properly forward, without leading to buffer overflow and
dropped packets in the routers. In an ideal network, pack-
ets would never be dropped, since a dropped packet in-
dicates a loss of time and energy for the sender and all
routers along the path, as well as lowered throughput and
increased latency between the sender and receiver.

It turns out that congestion control is a much more
difficult problem to solve than flow control for several
reasons. First, congestion control deals with all senders
and all routers in the network, rather than just one sender
and one receiver. Second, congestion control is decen-
tralized, with no authority dictating the maximum trans-
mission rate of any particular sender. Third, in game-
theoretic terms, congestion control has an inefficient
Nash equilibrium; all senders would like to transmit at
the maximum rate that their receivers can accept, but
if all senders did this, then the network would experi-
encecongestion collapse[33], where all oflocal— the
routers’ buffers fill to the point where most transmitted
packets get dropped. When congestion collapse occurs,
some packets will get through without being dropped, but
throughput will plummet and latency will skyrocket. The
only way to repair a congestion collapse is for the senders
to lower their transmission rate to the point where the
router queues will drain, but this is not the best strategy

for any individual sender.
As the Internet experienced exponential growth, con-

gestion quickly became the most pressing problem of
TCP. Nagle’s 1983 paper [33] coined the term “conges-
tion collapse” and also presented a few techniques to help
control it. Nagle’s algorithm improved the efficiency of
telnet-like applications by buffering several charactersof
data and transmitting them in a single packet, rather than
transmitting a separate packet for each character. Nagle
also experimented with the ICMP Source Quench Mes-
sage [38] to allow routers to throttle end-host transmis-
sions when the router’s queues started to fill, and pro-
posed several fair dropping policies for routers. Unfor-
tunately, none of these modifications were sufficient to
prevent congestion collapse, perhaps because the origi-
nal behavior of TCP was to sendmorepackets when loss
occurs, not less. We refer to this version as TCP Nagle,
which is TCP Postel with the addition of Nagle’s algo-
rithm.

In 1986, congestion collapse occurred in the Inter-
net on several occasions. For example, in the path be-
tween Lawrence Berkeley Laboratory and UC Berkeley,
throughput dropped from 32 Kb/s to 40 b/s. Jacobson, in
his seminal paper [23], added robust congestion control
to TCP which practically eliminated congestion collapse.
Essentially, a new state machine was added with three
states: slow start, congestion avoidance, and fast recov-
ery. The existing TCP mechanisms were left unchanged.
The congestion control state machine interacts with the
rest of TCP via a single variable called the congestion
window (cwnd). The new constraint is that a TCP sender
may not have more packets in flight than can fit into the
congestion window.

How does the TCP congestion control state machine
work? A new TCP connection begins in the slow start
state. The sender increases its transmission rate exponen-
tially until a packet is dropped. This allows a sender to
quickly determine the capacity of the network between
itself and the receiver. The alternative would be to be-
gin a transmission at the line rate of the link interface,
which is often much larger than the network interface and
would lead to a large degree of packet loss. The conges-
tion avoidance state uses additive increase multiplicative
decrease (AIMD) to slowly search for more bandwidth,
while reducing the transmission rate exponentially when
congestion occurs. Fast recovery is described in the next
section.

Jacobson’s modifications were so important and pro-
found that they instantly became the de facto standard
of TCP. The version of BSD UNIX in use at the time
was 4.3 Tahoe and Jacobson’s modifications, minus fast
recovery, were added to this version. BSD 4.3 Reno con-
tained all of these modifications plus fast recovery, and
the nameTCP Renobecame synonymous with conges-

4



tion control. Modern TCP implementations used in pro-
duction operating systems have not strayed too far from
TCP Reno.

2.2 Fast Retransmit and Fast Recovery

Fast retransmit and fast recovery were not described in
the initial paper [23], but were implemented simulta-
neously and were described later [10, 41]. One serious
problem with TCP Postel and TCP Nagle is that the loss
of a single segment will cause the sender to wait for an
RTO before retransmitting the lost segment. Timeouts
were typically 500 ms or 1000 ms, much longer than
the RTT of the TCP connection. While the sender was
waiting for a timeout, the sliding window algorithm pre-
vented it from transmitting more data.

Instead of reducing the RTO timer, Jacobson invented
a simple heuristic called fast retransmit to detect packet
loss (with high probability) as early as possible, and
much sooner than the RTO timer would normally ex-
pire. When a segment is lost in the network, the receiver
will receive the following segment, which will not be the
segment that the receiver was expecting. The receiver
will buffer this out-of-order segment and will transmit
an acknowledgement of the last in-order received seg-
ment, which will be a duplicate acknowledgement. If the
receiver continues to receive future segments other than
the one it expects next, then the receiver will continue
to transmit the same duplicate acknowledgements. Fast
retransmit allows the receiver to detect a series of three
duplicate acknowledgements and to retransmit the miss-
ing segment immediately.

Why three? A receiver can transmit a duplicate ac-
knowledgement for three reasons. The first reason is
packet loss, as previously described. The second rea-
son could be that one segment was delayed in the net-
work and arrived later than segments that were transmit-
ted later. We call this phenomenon packet reordering.
This case is indistinguishable from packet loss until the
receiver finally receives the delayed packet. The third
case is that the network could duplicate packets explic-
itly, which is typically a sign of a fault. Jacobson found
that three duplicate acknowledgements was a good bal-
ance between tolerating packet reordering, and being re-
sponsive to packet loss. The explicit packet duplication
case was ignored due to its rarity.

Furthermore, Jacobson concluded that packet losses
on the Internet were most likely caused by router conges-
tion rather than transmission errors, meaning that follow-
ing a fast retransmission, the conservative action would
be to reduce the sender’s offered load. In TCP Tahoe,
fast retransmit transitions back into slow start, followed
soon after by congestion avoidance. TCP Reno intro-
duces a third state: fast recovery. During fast recovery, a

sender will continue to transmit new data every time an
additional duplicate acknowledgement is received from
the network. This follows the conservation of packets
principle. Once an ACK is received for the retransmitted
segment, the sender transitions from fast recovery into
congestion avoidance, skipping slow start altogether.

Jacobson designed fast retransmit and fast recovery
with a specific network model in mind: a low bandwidth,
wired, unipath network, just like the one he used to con-
nect from LBL to UC Berkeley. As network technol-
ogy has evolved over the past 20 years, the assumptions
underlying fast retransmit and fast recovery have caused
major problems. For example, TCP is known to perform
poorly on large bandwidth-delay product networks [21],
wireless networks [4], and networks with multiple paths.
Modifying TCP to perform well on these types of net-
works has been the subject of hundreds of papers. We
will limit our scope to studying only multipath networks
in this paper.

2.3 Packet Reordering in Multipath Net-
works

In an ideal network, packets would never be reordered,
for two reasons. First, presumably, the original transmis-
sion order is the order in which the sender wishes the re-
ceiver to receive the packets. Second, receiving the pack-
ets in order simplifies the design of the receiver. TCP is
robust to packet reordering in the sense that each TCP
segment (packet) caries a sequence number, and the TCP
receiver uses this sequence number to ensure that pack-
ets are placed in their original transmission order before
delivering the data to the application.

The largest example of a multipath network is the In-
ternet itself. The Internet contains potentially thousands
of paths between two end hosts. In principle, each packet
of a TCP flow could be sent over a different path and the
IP protocol would ensure that all packets reach their des-
tination. When packets from the same flow take two or
more paths through a network, it becomes very likely that
packets will arrive out of order. The TCP receiver will
reorder the packets before presenting the data to the ap-
plication, so this should not be a problem in theory. But
in practice, the TCP sender’s fast retransmit mechanism
will often mistake packet reordering for packet loss and
will continue to reduce its offered load to unacceptably
low levels. In fact, multipath routing remains mostly un-
used principally because of this reason.

Data center networks are very different from the In-
ternet. The Internet topology is irregular, and there exist
multiple unequal cost paths between pairs of hosts. La-
tencies are measured in the tens to hundreds of millisec-
onds. The routers used in the Internet typically have very
large DRAM-based packet buffers. In contrast, data cen-
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ter networks usually have a regular topology with multi-
ple equal cost paths between pairs of hosts. Latencies are
typically 100µs. And data center switches often have a
minimum amount of SRAM-based packet buffers. The
focus of this paper is on improving multipath TCP per-
formance in data centers, but we focus mainly on the
work in wide-area multipath TCP because of its richer
history.

3 Measurement Studies

As mentioned in the introduction, routers and switches
try very hard to prevent packet reordering. But despite
these efforts, several studies have found a significant de-
gree of packet reordering in the Internet. The degree
of reordering is likely to be much worse in data center
networks that use per-packet load balancing. This sec-
tion synthesizes the findings of several major studies of
packet reordering to answer two important research ques-
tions.

3.1 How Common is Packet Reordering?

From about 2,880 TCP connections to a single server,
most of which transferred less than 100 KB of data,
Mogul found that about 125, or 4.3%, of those connec-
tions had at least one reordered packet [32]. Further-
more, the distribution followed a power law. For ex-
ample, approximately 100 connections had 1 reordered
packet, while approximately 1 connection had 100 re-
ordered packets. Unfortunately, Mogul does not provide
insight into the degree of reordering, i.e., how late the re-
ordered packets were when they finally arrived. Without
this data, it is not possible to determine the number of
spurious retransmissions.

Paxson analyzed 20,000 TCP connections between 35
Internet nodes and found that packet reordering was actu-
ally common in the Internet with 36% of all connections
having at least one reordered packet, and 2% (0.6%) of
all data (ACK) packets arriving late [36]. In fact, one
connection had 36% of its packets reordered.

Paxson found that reordering was not uniformly ob-
served and some sites exhibited a much higher degree of
packet reordering than others. Paxson writes,

“Reordering is also highly asymmetric. For ex-
ample, only 1.5% of the data packets sent to
ucol . . . arrived out of order [, whereas 15%
of the data packets sent by theucol site . . .
arrived out of order]. This means a sender can-
not soundly infer whether the packets it sends
are likely to be reordered, based on observa-
tions of the acks it receives, which is unfortu-
nate, as otherwise the reordering information

would aid in determining the optimal duplicate
ack threshold to use for TCP fast retransmis-
sion.”

Paxson found that in some cases, connections with
large degrees of packet reordering had no packet loss
and no spurious retransmissions due to fast retransmit.
He found that for every 22 “good” retransmissions due
to packet loss, there was one “bad” retransmission due
to mistaking packet reordering for packet loss. He stops
short of computing the lost throughput due to these spu-
rious retransmissions.

Bennett, Partridge, and Shectman analyzed bursts of
ICMP ping packets between hosts that all transit the
same router and were able to correlate the degree of re-
ordering with the configuration and instantaneous load of
this router. They found that over 90% of “connections”
experienced packet reordering. In some sense, this ex-
periment is incongruent with the previous TCP studies
since routers may treat ICMP packets differently than
TCP packets, and the small size of ping packets only
increases the chances of reordering due to parallelism,
since more pings will fit in the pipe than the larger TCP
segments.

Iannaccone, Jaiswal, and Diot conducted a much
larger and more complete study of several million TCP
flows passing through a single core router [19]. They
found that less than 5% of TCP flows experience packet
reordering and less than 2% of the individual packets
within these flows. This disagrees with earlier studies.
They also found that only 40% of reordered packets will
trigger a fast retransmit. Only 10% of reordered packets
were delayed by 8 packets or more.

Laor and Gendel emulated reordering on a backbone
link and showed that flows with a very small RTT of less
than 1 ms are more robust to packet reordering and have
a higher throughput over time [24]. This is most likely
due to the fact that with a small RTT, the sender’s con-
gestion window never gets very large, so it takes a much
shorter amount of time to recover from a decrease in the
congestion window. This is very good news for data cen-
ter networks that have a small bandwidth-delay product.

3.2 Why do Packets get Reordered?

Mogul suggested that packet reordering may be caused
by “multiple paths through the Internet” [32], but does
not elaborate.

Paxson claims that rapidly-oscillating routes can lead
to packet reordering [36], and provides evidence that the
two are strongly correlated. Paxson also provides evi-
dence that routers can sometimes “freeze” while process-
ing a routing update, which can lead to packet reordering.
For these reasons, Paxson categorizes packet reordering
as pathological, i.e. abnormal, behavior.
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Bennett, Partridge, and Shectman [5] claim that packet
reordering is actually completely normal behavior and
can be explained simply as the effects of parallelism in-
side routers as well as striping across parallel external
links, both of which are commonly used for bandwidth
scaling. Furthermore, reordering increases as load in-
creases.

4 Solutions Described in the Literature

The measurement studies presented in section 3 revealed
that packet reordering is prevalent in the Internet, and
that packet reordering interacts poorly with fast retrans-
mit, leading to poor TCP performance. Many solutions
have been proposed to improve TCP performance under
high degrees of packet reordering. This section describes
these proposed solutions independent of their original
implementation and analysis. Section 5 describes and
compares the original systems that implemented these
solutions. Our rationale for separating the solutions from
their original implementations is that in most cases, mul-
tiple solutions can be combined into a single system.

There are roughly four different types of solutions de-
scribed in the literature. The first solution is to solve the
packet reordering problem at a lower layer in the protocol
stack, such that TCP won’t even receive DUPACKs. The
second solution is to dynamically adjust dupthresh, the
number of DUPACKs required to trigger fast retransmit.
The third solution is to enter fast retransmit, by delaying
the start of fast recovery. The fourth solution is to de-
tect when a retransmission was spurious and to restore
the original cwnd and ssthresh. This involves being able
to differentiate between good retransmissions and spuri-
ous ones. These solutions are depicted on a timeline in
Figure 2.

time

Receive

DUPACK #1

Receive

DUPACK #2

Receive

DUPACK #3 / 

Trigger Fast

Retransmit

Enter Fast

Recovery Receive ACK

1 2, 3 4

Figure 2: When each of the four solutions can be used.

4.1 Solution 1: Solving the Problem at a
Lower Layer

For deployment reasons, it may not be possible to modify
TCP, and thus lower-layer solutions become attractive.

4.1.1 Reorder Buffer

Most switches and routers are designed to maintain
packet order, even though it adds cost and complexity.
Despite this, packets still arrive reordered at end hosts.
One way to improve the performance of TCP, without
modifying TCP, is to reorder the packets before TCP re-
ceives them using a separate reorder buffer. This would
prevent reordered packets from reaching the receiver,
thus preventing DUPACKs from reaching the sender and
causing a spurious retransmission. It would also prevent
reordered ACKs from reaching the sender.

A reorder buffer could be implemented in software as
a Layer 3.5 shim layer between IP and TCP. Or it could
be implemented in hardware in the NIC as a new Layer
2.5, similar in spirit to a TCP offload engine. It is not
immediately clear which implementation would be more
cost effective and more research should be performed.

4.1.2 Network Coding

Another way to shield TCP from reordering is to use net-
work coding. Network coding can be defined as “cod-
ing above the physical layer in a packet network” [17].
In its full generality, network coding allows each node
or switch in a network to extract the information from
one packet, mix it with information from a local cache of
packets, and then generate another newly encoded packet
to be transmitted to the next hop of the network. The en-
coded packet then contains information from all of the
mixed packets. The receiver of these encoded packets
can forward them as is, or decode them after enough en-
coded packets have arrived.

Network coding effectively removes the notion of or-
dering from a sequence of TCP segments; if there is no
ordering, then there can be no reordering. The question
then becomes how best to integrate network coding into
TCP.

Although network coding has shown promising re-
sults for wireless networks, it may not be the best so-
lution for a wired network; there are important tradeoffs
which must be considered. Communication latency in-
creases because the decoding node must collect enough
packets before the original packets can be recovered.
Larger buffers are also required on the sender to hold
the original packets to be mixed, and on the receiver to
hold the mixed packets to be decoded. However, net-
work coding provides many benefits. In certain topolo-
gies and communication patterns, network coding can
actually increase throughput by reducing the total num-
ber of required hop-by-hop transmissions. Network cod-
ing, specifically erasure coding, can mask packet loss by
adding redundant information to the packets; the orig-
inal set of packets can be decoded even if only a sub-
set of the encoded packets are received. Network cod-
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ing also slightly increases security since an eavesdropper
must collect enough encoded packets before any original
packet can be decoded.

4.2 Solution 2: Dynamically Adjusting
dupthresh

In 1988, on a 56 Kb/s wired Internet path with three
routers, Jacobson found that three identical DUPACKs
was a good estimator for packet loss. The magic num-
ber “3” was thus hardcoded into every implementation
of TCP for the next decade, with little question as to why
this number was optimal. Let us consider replacing this
constant with a variable, named dupthresh. Just as TCP’s
RTO (retransmission timeout) is dynamically adapted
depending on the estimated RTT, one could imagine
adapting dupthresh depending on the measured degree of
reordering in the network [35,36]. This could potentially
reduce the number of spurious retransmissions because
it could take more than three DUPACKs to trigger fast
retransmit. Unfortunately, this will also delay a fast re-
transmit when packet loss occurs, so care must be taken
not to be too tolerant of packet reordering.

4.3 Solution 3: Delaying the Onset of Con-
gestion Control

Another possibility is for the sender to avoid entering fast
recovery immediately after fast retransmit [35, 36]. This
allows the sender more time to wait for an ACK for a de-
layed segment and like solution 2, has the possibility of
not invoking congestion control. The downside is that it
makes TCP less responsive to packet loss. This solution
is very similar to solution 2 with similar pros and cons.

4.4 Solution 4: Detecting and Recovering
from Spurious Retransmissions

The most devastating effect of a spurious retransmission
is that the sender needlessly reduces its congestion win-
dow by a factor of 2. One simple improvement to TCP
is to detect these spurious retransmissions and to roll-
back the congestion window to its state exactly before
fast retransmit was triggered [5]. The argument is as
follows: since packet reordering is not packet loss, the
path between the sender and the receiver is not congested
and therefore the congestion window should not be re-
duced. Although rollback alone will not prevent the lost
throughput and added latency from a spurious retrans-
mission, the biggest gains come from restoring the con-
gestion window. Otherwise it would take many ACKs to
restore the window to its original value.

This of course requires that the sender can determine
when a retransmission was spurious. Standard TCP Reno

lacks such a technique, which has been referred to asre-
transmission ambiguity[27]. The literature has proposed
at least three techniques for eliminating retransmission
ambiguity, and thus determining when a packet retrans-
mission was spurious.

4.4.1 ACK Timing

If an ACK “comes back far too soon” after a retrans-
mission [5], then with extremely high probability the
ACK belongs to the original transmission and not the re-
transmission. Hence, packet reordering occurred and not
packet loss so the retransmission was spurious.

But how should the phrase “far too soon” be defined?
One suggestion is to use 75% of the estimated RTT [3,8].
It is not clear what this value should be. In fact, the other
options are more robust techniques that are not subject to
variations in the RTT.

4.4.2 Timestamping

TCP supports an option to place a timestamp in a data
segment or an ACK segment [21, 22]. If a sender places
a timestamp in a retransmitted data segment, then one of
two things may happen. First, the sender could receive
an ACK with the same timestamp. This would indicate
that the original data segment was lost but the retrans-
mitted segment was received. Second, the sender could
receive an ACK with an older timestamp. This would in-
dicate that the original data segment was delayed by the
network and arrive out of order. Hence, the retransmis-
sion was spurious and the congestion window can safely
be rolled back [3].

One problem with using timestamps in every segment
and every ACK is that each timestamp consumes 12 ad-
ditional bytes [20]. In any case, the sender need only
remember the timestamps associated with retransmitted
segments rather than all segments, although some TCP
variants such as TCP Vegas [11] actually do keep track
of timestamps for all unacknowledged segments.

4.4.3 DSACK

DSACK [30] allows a receiver to notify a sender when-
ever it receives a duplicate segment, as well as the se-
quence number of that segment. If the sender keeps
track of which segments have been retransmitted, then
the sender can determine when packet reordering has
occurred. DSACK is an extension of SACK, and due
to SACKs popularity as well as its communication effi-
ciency, DSACK is commonly accepted in the literature
as the best technique for detecting spurious retransmis-
sions.
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Name Year Extends S1 S2 S3 S4
TCP Eifel 2000 TCP Reno X

TCP-LPC 2002 TCP Reno X X

TCP Westwood 2002 TCP Reno X

TCP-BA 2002 TCP Eifel, SACK X X X

RR-TCP 2003 TCP-BA X X

TCP-PR 2003 TCP Reno X

TCP-DCR 2004 TCP SACK X

TCP-NCR 2006 TCP-BA, RR-TCP, TCP-DCR X

TCP/NC 2009 TCP Vegas X

Table 1: TCP variants.

5 TCP Variants

This section describes the many TCP variants that have
been proposed over the past decade to solve the TCP
packet reordering problem. Each of these variants im-
plements one or more of the solutions from section 4.
Table 1 summarizes these TCP variants.

Some TCP variants were designed specifically to solve
the packet reordering problem in multipath networks.
Others were designed to solve the packet corruption
problem in wireless networks, although they often draw
from the same solution space. The fact that two different
communities are working in the same area, as well as the
fact that the computer science (ACM) and electrical engi-
neering (IEEE) communities often don’t cross pollinate
as much as they should, has led to duplication of work
and rediscovery of these basic solutions. Therefore, one
should not be surprised if a TCP variant proposed later is
actually less sophisticated than one proposed earlier.

We compare only the high-level features of these TCP
variants. A performance comparison o determine the rel-
ative benefits and drawbacks of the different solutions
would require experimentation. See section 7.

5.1 TCP Eifel

TCP Eifel [27] was designed to improve the performance
of TCP across wireless links, where packet loss due to
corruption is mistaken for congestion, causing the sender
to keep reducing its congestion window. TCP Eifel uses
solution 4: detecting and recovering from spurious re-
transmissions and spurious timeouts. For detection, TCP
Eifel uses timestamps embedded in each data segment
and each ACK segment. When a retransmission or time-
out is found to be spurious, TCP Eifel restores cwnd and
ssthresh to their former values.

The authors note that this solution can cause a sender
to transmit a burst of packets after restoring the conges-
tion window, which is undesirable. The authors recom-
mend using a separate “burst pacer” to compensate. It is
known that ACK reordering can also lead to bursts [5],
so this suggestion should be given consideration.

Unfortunately, the paper does not provide a good anal-
ysis of the performance improvements of TCP Eifel over

TCP Reno. One of the arguments of why such an analy-
sis is difficult is that TCP Eifel’s enhancements are only
used when packet reordering occurs in the network to a
large enough degree to trigger spurious retransmissions.
One experiment that would have been helpful is to vary
the frequency and degrees of reordering in a TCP flow
while plotting the average throughput.

TCP Eifel was implemented as a modification of an
existing TCP stack. In order to perform experiments, a
new Layer 2.5 protocol was implemented between the
network layer (IP) and the link layer (PPP). This layer
was called “hiccup” and was used to artificially delay
certain packets, thus causing reordering. Experiments
were conducted by connecting two machines directly
with a 9.6 Kb/s serial line.

5.2 TCP-LPC

Lee, Park, and Choi [25] did not cite any of the com-
mon literature on packet reordering and seem to have
been working in this area independently. TCP-LPC was
submitted 13 months after TCP Eifel’s publication, and
many of the original solutions were proposed in [36]
and [5].

TCP-LPC uses solution 2 for the sender and solution
3 for the receiver. For the sender, they statically set
dupthresh based on the number of possible paths between
sender and receiver. They claim their heuristic is sup-
ported by simulation. The receiver waits a short time
period before transmitting a DUPACK. Note that this is
mostly equivalent to a sender waiting before triggering
fast retransmit, except that limited transmit will not be
invoked.

5.3 TCP Westwood

TCP Westwood [28] was designed for wireless networks.
TCP Westwood is unique among the TCP variants stud-
ied here. Instead of avoiding spurious retransmissions, or
recovering from them, it simply ignores them. Instead, a
TCP Westwood sender estimates the actual end-to-end
bandwidth by sampling the ACKs. If this instantaneous
ACK bandwidth is large, then TCP Westwood assumes
that fast retransmit does not indicate congestion, and so
only reduces the congestion window by a small amount.
On the other hand, a timeout would indicate severe lev-
els of congestion, enough to stop the flow of ACKs. TCP
Westwood then would drastically reduce the congestion
window.

Simulations of TCP Westwood show that it performs
well on wired, multipath networks [15]. However, these
simulations also show that TCP Reno and TCP SACK
perform just as well when the RTT is less than 20 ms
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and when only 2 or 3 paths are used. For 4 paths, TCP
Westwood performs an order of magnitude better.

5.4 TCP-BA

TCP-BA [8] directly improves upon TCP Eifel by retain-
ing solution 4, but also adding solution 2: the ability
to dynamically increase dupthresh according to the de-
gree of packet reordering in the network. They evaluate
three techniques for increasing dupthresh after a spuri-
ous retransmission: constant increment, increment rela-
tive to length of reordering event, and an exponentially-
weighted moving average of the length of the reordering
events. The first two have good performance but EWMA
does not.

They also evaluate solution 3: waiting a short time af-
ter receiving the third DUPACK before triggering a fast
retransmit. Their experiments show that their solution 3
performs the best in terms of throughput and unneces-
sary retransmissions. Unfortunately, solution 3 requires
an extra timer.

One minor difference between TCP-BA and TCP Eifel
is that TCP-BA uses DSACK rather than TCP times-
tamps to detect spurious retransmissions.

To solve the burstiness problem, they use limited
transmit [16], which allows the sender to transmit new
TCP segments whenever DUPACKs arrive in fast recov-
ery mode. Normally, limited transmit only allows send-
ing new data for the first two DUPACKs; their extension
allows TCP-BA to send one new TCP segment whenever
two additional DUPACKs arrive.

Unlike TCP Eifel, these experiments were conducted
entirely in simulation using the ns-2 simulator. They
extend the simulator to introduce a router that reorders
packets internally. However, their model of reordering is
very simplistic and does not try to model an actual router.
Instead, they wait until a queue of packets forms and ran-
domly swap two packets in the queue. With simulation,
they show that one packet reordering event per second is
enough to drop performance by 7.4%.

They determined that their solutions 2 and 3 only
improved performance by approximately 1%, and con-
clude,“ . . . that the impact any particular compensation
scheme has on performance is minimal and that the per-
formance increase comes from [solution 4] when a re-
transmission is determined to be spurious.”

5.5 RR-TCP

RR-TCP [45] extends TCP-BA by adding the ability to
reducedupthresh as well as increase it. The authors
claim that this is important since TCP-BA will keep
increasing dupthresh until eventually not enough DU-
PACKs arrive and a timeout occurs, at which point TCP-

BA will reset dupthresh to 3. RR-TCP did not adopt so-
lution 3.

RR-TCP also extends limited transmit to send up to an
entire congestion window of data when in the fast recov-
ery state. This is more aggressive than TCP-BA, which
only transmits a new TCP segment for every two DU-
PACKs received.

5.6 TCP-PR

TCP-PR (Persistent Reordering) [9] is similar to TCP
Westwood in the fact that it ignores DUPACKs that
would trigger a fast retransmit. Instead, TCP-PR times-
tamps every segment, and ACKs that do not arrive before
the timeout get retransmitted. This is a very straightfor-
ward design but could suffer from implementation chal-
lenges, especially on high-speed links.

5.7 TCP-DCR

TCP-DCR (Delayed Congestion Response) [7] was de-
signed for wireless networks. TCP-DCR extends TCP
SACK and implements solution 3: delaying the onset of
congestion control after receiving three DUPACKs. The
delay is set to the RTT, which is just below the RTO
value.

5.8 TCP-NCR

TCP-NCR (Non-Congestion Robustness) [6] is a syn-
thesis of TCP-BA, RR-TCP, and TCP-DCR. Fundamen-
tally, TCP-NCR only implements solution 2: dynami-
cally varying dupthresh. However, dupthresh is set to
be equal to a congestion window’s worth of data, i.e. one
RTT. Notably missing is a solution 4; the authors suggest
that TCP-NCR can be combined with any other TCP that
features a solution 4.

TCP-NCR offers two limited transmit modes. Careful
limited transmit is essentially the same behavior as TCP-
BA, where one new data segment is sent for every two
DUPACKs. Aggressive limited transmit is the same as
RR-TCP, where one new data segment is send for every
DUPACK.

RFC4653 does not present simulation results, only a
description and a specification.

5.9 TCP/NC

TCP/NC (Network Coding) is a radical idea [42]. Al-
though TCP/NC was designed to overcome lossy links
in wireless networks, it might also be suitable for solv-
ing the packet reordering problem in wired multipath net-
works. TCP/NC is implemented as a Layer 3.5 protocol,

10



meaning that it can be used with any TCP implementa-
tion. The paper uses TCP Vegas [11] as the base imple-
mentation due to its ability to use increases in the RTT
as congestion signals. However, the TCP/NC may need
to be heavily modified to work well on wired networks,
since TCP/NC transmits extra packets to mask packet
loss, which could lead to congestion.

6 Critical Analysis

Without realistic measurements of actual or simulated
data center networks, it is difficult to perform a quan-
titiative analysis. Nevertheless, we will attempt such an
analysis.

6.1 Which Solution is Best?

First, given the lengths of Ethernet cables in data cen-
ters, the delay through individual packet switches, and
the number of switch hops between end hosts, a typical
data center RTT is 100µs. Second, Ethernet specifies
a maximum payload size of 1500 bytes2. This payload
size corresponds to 1538B “on the wire,” which takes
12.304µs to transmit. Therefore, thepipe size (maxi-
mum window size) is 8 packets.

Consider the following scenario. Alice is transmitting
to Bob and has reached a steady state of 8 packets per
window. Over the duration of 7 RTTs, Alice would send
8*7=56 packets to Bob, in the absence of frame corrup-
tion, congestion, and packet reordering.

Now consider what would happen if during the first
RTT, one of Alice’s packets was delayed by exactly three
frames. This would cause Bob to generate three DU-
PACKs, which would cause Alice to enter Fast Recovery.
During the second RTT, Alice’s Fast Retransmit mecha-
nism would (spuriously) retransmit the delayed frame.
This would reduce the number of good packets from an
ideal of 16 (8*2) to 15 (8+7). During the third RTT, Al-
ice has already exited Fast Recovery and has re-entered
Congestion Avoidance, but with cwnd reduced by a fac-
tor of 2. So during the third RTT, Alice will only trans-
mit 4 frames instead of 8. This number will increase by
1 each RTT, until the 7th RTT, when Alice has grown
cwnd back up to the original and maximum 8 frames.
The total number of good frames transmitted during this
period would be 8+7+4+5+6+7+8=45, which is 80% of
the ideal number of 56 frames.

From the above analysis, the spurious retransmission
accounts for only a single lost frame, but the associated

2Most network equipment supports Jumbo Ethernet frames, i.e.
frames with a payload strictly larger than 1500B. However, Jumbo
frames are seldom used in practice due to their buffering requirements
and long latencies in store-and-forward networks.

Fast Recovery, and the corresponding halving of the con-
gestion window, accounts for 10 lost frames. For WANs
with much larger RTTs, this difference is even more pro-
nounced. From this analysis, we predict that solution 4,
detecting and recovering from spurious retransmissions,
is likely to be the most important solution employed in
any high-performance data center TCP implementation.
Solutions 2 and 3, which modify dupthresh to prevent
spurious retransmissions, will most likely have very lit-
tle benefit given the presence of solution 4.

Solution 1, such as either a reorder buffer or network
coding, is unlikely to yield a satisfactory solution to the
original problem. The primary reason is the lack of econ-
omy of mechanism; any solution 1 will be duplicating
functionality that already exists in TCP. In the case of
the reorder buffer, it would be duplicating TCP’s reorder
buffer, and would be hiding important details from TCP.
It would also delay packet delivery to TCP, thus inflat-
ing the RTT and increasing the variance of the RTT and
the corresponding bustiness of the traffic. Network cod-
ing is nice in theory, but as we saw in previous sections,
the current proposal for network coding with TCP com-
pletely ignores congestion control. The effort to produce
a network coded TCP with congestion control is proba-
bly much more than simply implementing solution 4 us-
ing DSACK.

6.2 What about Timeouts?

For data center networks, large timeouts must be avoided
at all costs. Recall that a timeout is necessary when Fast
Retransmit is impossible, such as when an entire sender’s
window of packets has been lost, or the pathological case
of when dupthresh has grown so large that it is impossi-
ble to trigger Fast Retransmit. The original minimum
TCP timeout period, RTOmin, was approximately 1 sec-
ond. Later implementations of TCP reduced RTOmin to
500 ms, and most recently to 200 ms. However, even
200 ms is much too large for data centers. Note that this
is a minimum timeout period, and the actual timeout pe-
riod is slightly larger than the estimated RTT, but never
less than the RTOmin.

Assuming an RTT of 100µs, 200 ms accounts for
2,000 RTTs, during which time a total of 16,000 pack-
ets could be sent. If a sender loses an entire window of
8 packets, then from the TCP connection’s point of view,
this is equivalent to losing 16,000 packets, although the
network interface can use this idle time to send packets
from other TCP connections.

To avoid timeouts, solution 2 must be used very care-
fully to avoid the pathological case mentioned previ-
ously. Solution 3 can be tailored to trigger Fast Retrans-
mit right before a timeout, which is ideal. This hints that
solution 3 might be easier to implement in practice and
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is more likely to yield good performance across a wide
range of networks and use cases. Solution 1 also must be
used with care not to delay packets longer than the time-
out period, which complicates the design of solution 1
since it may not have access to the TCP’s estimated RTT
and corresponding timeout value. Solutions 2 and 3 will
have direct access and will not suffer from this interface
problem.

One must also question the usefulness of a timeout pe-
riod that is 2,000 times larger than the RTT. Others have
experimented with lowering RTOmin to 200µs and have
reported very good performance, and solving a different
but important data center network problem calledincast.
See section 7.5. We recommend lowering RTOmin as
well, and 200µs seems like a good place to start.

7 Proposed Experiments

Our group has constructed a small fat-tree data center
network that will allow us to conduct TCP and packet re-
ordering experiments. Figure 3 shows the network topol-
ogy of our testbed, which consists of 37 computers in a
single rack. Each computer occupies one rack unit (1U).

One computer, called theNAT box, is used as a net-
work address translator. The NAT box isolates our
testbed from the extraneous traffice on the UCSD CSE
network, while also allowing the rest of the computers to
access the Internet to download software updates. The
NAT box is used to compile software, as a repository of
scripts, configuration files, compiled binaries, and test
results, and to allow direct ssh access to the remaining
computers in the testbed. Finally, the NAT box hosts an
OpenFlow controller [31] during the actual experiments.

The remaining 36 computers are divided into 16
end hosts and 20 custom 4-port gigabit Ethernet (GbE)
switches. The end hosts run standard data center applica-
tions such as MapReduce [13], as well as network perfor-
mance benchmarks such as iperf. The custom switches
each run an OpenFlow client namedsecchanand con-
nect to the OpenFlow controller on the NAT box. The
custom switches also contain our switch modifications to
the secchan program as well as hardware modifications
to the NetFPGA [34].

The testbed contains two separate networks, a control
plane and a data plane. All 37 computers connect to the
control plane via a single 48-port GbE switch3. The con-
trol plane is used for ssh logins, for providing Internet
access for software updates, and for setting up the exper-

3Humorously, this single 48-port switch is both more powerful and
an order of magnitude less expensive than our experimental switch built
from 20 servers and NetFPGAs. However, our fat-tree networkarchi-
tecture can scale much larger than any single-stage switch, and any
commercial design would reduce cost by omitting unnecessary compo-
nents.

iments. During experiments, the control plane is used to
allow the computers to coordinate with the NAT box; the
end hosts write their results to the NAT box and the cus-
tom switches coordinate with the OpenFlow controller
on the NAT box.

The data plane is only used during experiments. Each
end host has a direct connection to one of the custom
switches. The rest of the ports on the custom switches are
used to form the fat-tree interconnect. Since our fat-tree
multi-stage switch is a Layer 2 switch, only the end hosts
have IP addresses on the data plane. The IP addresses are
part of the 10.0.0.0/8 private address range.

7.1 Per-Packet Load Balancing Algorithms

Exactly how should each NetFPGA perform per-packet
load balancing? It is important to realize that not every
packet should be load balanced. Only packets entering a
switch element on a downward-facing port, and destined
for an upward-facing port, should be load balanced. A
consequence of this is that load balancing only happens
on edge and aggregation switches, not on core switches.

One naive load balancing algorithm would be to main-
tain a single counter corresponding to an upward-facing
output port to forward the next packet out of. This
counter would wrap around once all upward-facing ports
have been enumerated. While simple and straightfor-
ward, this algorithm may not perform well in practice.
Consider the scenario where two different TCP flows are
arriving at an edge switch from downward-facing ports,
one on port 0 and one on port 1, both sustaining 1 Gb/s.
Our naive load balancer may not distribute the packets
from these two flows evenly across both upward-facing
ports. Synchronization could occur where all packets ar-
riving at port 0 are forwarded out port 2, and all packets
arriving at port 1 are forwarded out port 3. This patho-
logical condition is not the intended behavior of the load
balancer. However, for reasons yet unknown, this patho-
logical case may not occur in practice, making this sim-
ple algorithm a very good choice.

One can also imagine more complicated scheduling
policies, such as least loaded output port, least recently
used output port (within some given time window), and
uniform random. We propose a second literature search
to complement this survey, focused on per-packet load
balancing algorithms. The best algorithm may have al-
ready been discovered, and a literature search would both
generate a menu of choices for further experimentation,
as well as direct us to likely candidate algorithms that
are expected to perform well. We propose implement-
ing several of these per-packet load balancing algorithms
in hardware using a NetFPGA, and running these algo-
rithms on our testbed.

Since the fat tree is a regular network, we expect that
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Figure 3: Our experimental testebed for conducting TCP and packet reordering experiments.
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all algorithms will perform equally well on an unloaded
network with a single TCP flow between two end hosts.
In fact, all packets should arrive in order, making TCP re-
ordering unnecessary. The real test will come with cross
traffic and multiple TCP flows from multiple end-host
pairs. In this case, we hypothesize that the more compli-
cated algorithms, and uniform random, will perform bet-
ter at avoiding congested links than the more naive algo-
rithms. To generate cross traffic, we propose using mul-
tiple iperf instances on various end-host pairs to allow
scaling the experiment from a single flow up toO(162)
flows.

7.2 Popular TCP Variants

The Linux kernel includes the following 10 TCP vari-
ants: TCP Reno, TCP BIC, TCP CUBIC, TCP Hybla,
TCP Illinois, Scalable TCP, TCP Vegas, TCP Veno, TCP
Westwood, and TCP Yeah. Each variant has a differ-
ent goal and history, such as improving performance over
large bandwidth-delay product networks or wireless net-
works. None of these variants was designed explicitly to
improve multipath performance such as TCP Eifel [27]
or RR-TCP [45]. However, we have already seen simu-
lation results in section 5 that TCP Westwood performs
well on multipath networks. And it may be the case that
other “wireless TCPs” such as TCP Beno or TCP Hybla
also perform well. Regardless, it would be important to
know which TCPs perform particularly well or particu-
larly poorly on multipath networks.

We propose to repeat the per-packet load balancing ex-
periments of section 7.1 under these 10 different TCP
variants, rather than just with TCP BIC, the default TCP
variant for Linux. We hypothesize that TCP Westwood
will perform the best out of all variants due to its ability
to completely ignore DUPACKs, whereas implementa-
tions like TCP Reno will perform the worst. The most
interesting results will be when the network is heavily
loaded with lots of cross traffic, meaning that the amount
of reordering in the network due to queueing delay will
be maximized.

7.3 Implementing the 4 Solutions

The experiment outlined in section 7.2 is simple to con-
duct since the variants have already been implemented.
It is less straightforward to compare the 4 solutions from
section 4. Since there is no single TCP variant that im-
plements all 4 solutions, with sufficient parameterization
to allow “turning off” various solutions to determine the
performance improvement each solution in isolation do-
nates to the overall performance improvement.

We propose a slightly more laborious experiment in
which we take the standard TCP Reno variant and add

solutions 2, 3, and 4, to the implementation. We will
parameterize the variant in accordance with the recom-
mendations by Blanton and Allman [8], using their same
variable names and strategies. We will then repeat the
experiment described in section 7.1, varying the differ-
ent parameters each time.

We hypothesize that the largest performance increase
will come from solution 4, and that a simple strategy of
restoring the original cwnd and ssthresh variables will be
sufficient.

One possible outcome of these experiments is identi-
fying a TCP variant that will perform well over the Inter-
net, over wireless paths, and over multiple paths. We call
this variant TCP Awesome.

7.4 Delayed Acknowledgements

Delayed acknowledgements [2] were introduced to re-
duce the computational requirements of a TCP receiver.
Normally, a TCP receiver would acknowledge every re-
ceived segment immediately. Delayed acknowledge-
ments allow a TCP receiver to wait up to 200 ms be-
fore sending an acknowledgement, or the receipt of two
segments, whichever happens first. Delayed acknowl-
edgements increase the theoretical goodput of bidirec-
tional TCP flows on Gigabit Ethernet from 897 Mb/s to
921 Mb/s. However, the reduction in the total number of
acknowledgements transmitted may not work well in the
data center [44].

We propose repeating all previously described exper-
iments with delayed acknowledgements disabled. We
hypothesize that this will provide an improvement in
throughput of between 0% and 5% for all experiments
due to the TCP senders ability to receive ACKs and DU-
PACKs immediately, thus being able to recover more
quickly after a congestion event. The tradeoff is in-
creased bandwidth utilization by the extra ACK seg-
ments which will lower throughput.

7.5 RTOmin

It has been suggested that RTOmin does more harm
than good in data center networks and should be elim-
inated [44]. The reason is that RTOmin is on the order
of 200 ms, whereas the RTT in a data center network
is typically 100µs. RTOmin effectively overrides the
RTO timer’s estimate of when to timeout and forces the
RTO timer to wait much longer, in this case 2,000 times
longer.

Similar to section 7.4, we propose repeating previous
experiments with RTOmin removed in order to deter-
mine the performance enhancement that a smaller time-
out value has after packet loss.
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We hypothesize that eliminating RTOmin will make
solutions 1, 2 and 3 unnecessary. For example, if the
timeout is on the order of one RTT, then one could sim-
ply ignore DUPACKs, fast retransmit, and fast recovery,
and allow a timeout whenever packets are delayed for
too long of a time period. However, solution 4 can be
used to detect spurious retransmissions and restore the
original cwnd and ssthresh variables almost immediately
afterward, meaning that very little throughput is lost due
to being in slow start temporarily.

8 Conclusion

Many different TCPs have been proposed that claim to
be able to solve the packet reordering problem. How-
ever, none of them have been evaluated in the context of
multipath data center networks, nor have they found sig-
nificant deployment on the Internet. One of the reasons
for the lack of adoption is that that previous TCPs might
be more aggressive than TCP Reno, meaning that TCP
Reno flows will suffer, leading to a TCP arms race that
could culminate with congestion collapse. Data center
networks are not limited by these constraints and have
more flexibility with trying different congestion control
algorithms.

Today, the consensus seems to be that packet reorder-
ing in the wide area is not a pressing enough problem to
warrant a change to TCP. However, data center network-
ing is a new area that has not yet examined TCP perfor-
mance. One of the major differences between TCP in the
data center is that the network consists of high-capacity,
low-latency links, which very few TCP implementations
address. Further, the regularity of data center network
topologies combined with multiple equal-cost shortest
paths make it intriguing to solve the packet reordering
problem so that packet switches can use per-packet load
balancing rather than per-flow load balancing.

Our analysis indicates that solution 4, detecting and
recovering from spurious retransmissions, is most likely
to almost reach the ideal performance of no reordered
packets compared to the other three solutions. Solution
4 is also simple to implement using already standard-
ized TCP protocols such as DSACK. We also conclude
that the current RTOmin of 200 ms is much too large
for data center networks where typical RTTs measure
around 100µs. A better RTOmin would be something
around 200µs. These two changes, solution 4 and low-
ering RTOmin, are likely to yield excellent performance
in per-packet load balanced data center networks with no
other changes necessary.
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