
Hunting Mice with Microsecond Circuit Switches

Nathan Farrington, George Porter, Yeshaiahu Fainman, George Papen, Amin Vahdat†

UC San Diego UC San Diego and Google†

ABSTRACT
Recently, there have been proposals for constructing hybrid
data center networks combining electronic packet switching
with either wireless or optical circuit switching, which are
ideally suited for supporting bulk traffic. Previous work has
relied on a technique called hotspot scheduling, in which the
traffic matrix is measured, hotspots identified, and circuits
established to automatically offload traffic from the packet-
switched network. While this hybrid approach does reduce
CAPEX and OPEX, it still relies on having a well-provisioned
packet-switched network to carry the remaining traffic. In
this paper, we describe a generalization of hotspot schedul-
ing, called traffic matrix scheduling, where most or even
all bulk traffic is routed over circuits. In other words, we
don’t just hunt elephants, we also hunt mice. Traffic matrix
scheduling rapidly time-shares circuits across many destina-
tions at microsecond time scales. The traffic matrix schedul-
ing algorithm can route arbitrary traffic patterns and runs in
polynomial time. We briefly describe a working implemen-
tation of traffic matrix scheduling using a custom-built data
center optical circuit switch with a 2.8 microsecond switch-
ing time.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design—circuit-switching networks,
packet-switching networks, network topology

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Data Center Networks, Circuit Switching

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’12, October 29–30, 2012, Seattle, WA, USA.
Copyright 2012 ACM 978-1-4503-1776-4/10/12 ...$10.00.

k1 k1k2 k2

Pod 1

k = k1+k2

Pod N

k = k1+k2

Hybrid
Data Center Network

packet
switching

circuit
switching

Figure 1: Hybrid data center network architec-
ture: each of the N pods has k uplinks, par-
titioned between k1 packet switch ports and k2

circuit switch ports.

1. INTRODUCTION
Recently, there have been proposals for constructing hy-

brid data center networks (Fig. 1), combining electronic packet
switching with either wireless [8,18] or optical circuit switch-
ing [5, 7, 17]. A key advantage of such hybrid networks is
that they provide increased amounts of bisection bandwidth
with lower CAPEX and OPEX compared to an equivalent
packet-switched network [7].

These hybrid networks have all used similar circuit schedul-
ing frameworks that we call hotspot scheduling (HSS). In
HSS, (a) the inter-pod1 traffic matrix is measured, (b) the
traffic demand matrix is estimated, (c) hotspots are identi-
fied, and (d) a centralized scheduler establishes physical cir-
cuits between pods to automatically offload traffic from the
congested packet-switched network onto the circuit-switched
network. The remaining traffic is routed over the packet-
switched network. One of HSS’s shortcomings is that ex-
pensive algorithms need to be run before each switch recon-
figuration. Also, if a hotspot is not large enough to saturate
a circuit, then the excess circuit capacity goes to waste be-
cause the circuit cannot be shared. These two limitations
make HSS static and inflexible.

We argue that first-generation HSS only scratches the sur-
face of what is possible with circuit switching in the data
center. In this paper, we describe a generalization of HSS
1A pod is a unit of server aggregation, e.g., 1024 servers. A
pod is roughly equivalent to a row of racks.

1

called traffic matrix scheduling (TMS), where most or even
all bulk traffic is routed over circuits. TMS rapidly time-
shares circuits across many destinations at microsecond time
scales. In fact, TMS reduces to HSS as a special case. One
reason TMS has never been proposed before is that its im-
plementation is impractical using the millisecond time scales
of previous hybrid network prototypes. It is only with mi-
crosecond time-scale circuit switches that TMS becomes pos-
sible. TMS makes circuit switching much more efficient
than with first-generation HSS because much more of the
network traffic can now be offloaded to circuits.

Whereas HSS couples scheduling and switching together,
TMS decouples them. Like HSS, TMS uses expensive al-
gorithms to construct a circuit switch schedule. But unlike
HSS, once a schedule has been constructed, it is then imple-
mented in hardware at microsecond time scales. This sep-
aration of scheduling and switching is what allows TMS to
schedule a larger amount of traffic than HSS despite the fact
that the scheduling algorithms are not any faster. In a sense,
TMS does a much better job of amortizing the cost of the
scheduling algorithms than HSS.

While the circuit switch is busy rapidly setting up and
tearing down circuits between pods, hosts in these pods are
observing the state of the circuit switch to know when to
transmit packets. In other words, the hosts are using time-
division multiple access (TDMA) over standard packet-based
protocols such as Ethernet [14]. We will say little about
TDMA in this paper, other than to point out that variable-
length TDMA is our chosen method for hosts to access the
circuit-switched network, and instead focus on the design
and implementation of the traffic matrix scheduling algo-
rithm.

2. ALL-TO-ALL EXAMPLE
In this section, we walk through an example of TMS.

Consider eight pods running Hadoop and generating a per-
fectly uniform all-to-all communication pattern. Fig. 2 (a)
shows the pods physically connected to the same core cir-
cuit switch; Fig. 2 (b) shows them logically connected as
a full mesh. Fig. 2 (c) shows the inter-pod traffic demand
matrix with sources as rows, destinations as columns, and
values as fractions of the total link rate. The diagonal is not
zero because hosts send to other hosts in the same pod. Al-
though this intra-pod traffic does not transit the core circuit
switch, it is still accounted for in the traffic demand matrix.
This matrix is the desired transmission rate of the hosts; it is
the responsibility of the network to satisfy this demand.

With HSS, each pod would require 7 physical uplinks to
implement the logical topology in Fig. 2 (b) even though
each physical link would be heavily underutilized (1/8 of the
link). But with TMS a single uplink is time-division mul-
tiplexed to create 7 virtual (logical) links, each with 1/8 of
the capacity of one uplink, meaning that the entire traffic de-
mand can be routed with a single physical uplink, just like a
traditional electronic packet switch.

(a)

1 2 3 4 5 6 7 8

switch

(b)

1 2 3 4 5 6 7 8

(c)

1 2 3 4 5 6 7 8

1/81/81/8

1/8 1/8 1/8

1/8

1/8

1/8

1/8 1/8 1/8

1/81/8

1/8 1/8

1/8 1/8 1/8

1/81/81/8

1/8 1/8 1/8

1/8

1/8

1/8 1/8

1/8

1/8

1/8

1/81/8

1/81/8

1/8 1/8 1/8

1/81/8

1/8 1/8

1/81/81/8

1/8 1/8 1/8

1/8 1/8

1/81/8

1/8 1/8

1

2

3

4

5

6

7

8

1/8 1/8 1/8

1/81/81/8

1/8 1/8 1/8
src pod

dst pod (rate)

(d)

2T 3T 4T 5T 6T 7T 8TT0

1

2

3

4

5

6

7

8

src port (dst port)

time

1

2

3

4

5

6

7

8

2

3

4

5

6

7

8

1

3

4

5

6

7

8

1

2

4

5

6

7

8

1

2

3

5

6

7

8

1

2

3

4

6

7

8

1

2

3

4

5

7

8

1

2

3

4

5

6

8

1

2

3

4

5

6

7

loopback waste setup waste

Figure 2: Eight pods running Hadoop with an
all-to-all communication pattern. (a) physical
topology, (b) logical topology, (c) inter-pod traf-
fic demand matrix, (d) circuit switch schedule

The Gantt chart in Fig. 2 (d) shows a circuit switch sched-
ule that partitions time into 8 equal-duration time slots. Over
the course of the schedule, each source port will connect to
each destination port for exactly 1/8 of the total time, thus
implementing the logical full mesh topology in Fig. 2 (b)
and allowing all of the traffic to be routed. The schedule then
repeats. A circuit switch schedule has two sources of waste.
First, loopback traffic does not leave the pod and transit the
circuit switch, so any circuit switch loopback assignments
are wasted, such as the assignment from t = 0 to t = T .
Second, the circuit switch takes a non-negligible amount of
time to switch and setup new circuits (tsetup), which we rep-
resent as black bars at the end of each time slot. No traf-
fic can transit the circuit switch during this time. Reducing
loopback waste requires careful scheduling whereas reduc-
ing setup waste requires using faster switching technologies.

2.1 Duty Cycle and Effective Link Rate
The time during which the circuit switch is being recon-

figured is called tsetup and the time during which the cir-
cuit switch is stable and can carry traffic is called tstable.
The duty cycle, D, for a circuit switch schedule with equal-
length time slots, tslot, is given by

D =
tstable

tsetup + tstable
=
tstable

tslot
(1)

2

VOQ

total

time slot

7

7
7
0

4

4
4

4
4

4
4
4
4

5

5
5

5
5

5
5

6

6
6

6

6

1
11

2
3
4
5
6
7
8

1
11

1
1
1
1
1

2

2
2

2
2
2
2
2

3

3 5 6 74

1
2
3

1
2
3

1
2
3

1
2
3

1
2
3

7
0

4
5
6

2

2
3

3
3
3
3

0 0
0

0
0

0
0

0
0

1

7 05 6

7
0

4
5
6

3

7 06 1
7 0 21
0 21 3

421 3
542 3

5 643

3

1 2

7
0

4
5
6

1
0
0
0
0
0
0
0

0 7 13 18 22 25 27 28 28 28 28 28 28 28 28 28 28

Figure 3: Virtual output queue (VOQ) buffer
occupancies for a single host in pod 1 from cold
start in units of time (T).

The duty cycle is important because it determines the effec-
tive link rate of the circuit switch. For example, if the nomi-
nal link rate, L, is 10 Gb/s andD = 90µs

10µs+90µs = 90%, then
the effective link rate, Leffective = 9 Gb/s. This means that
the circuit switch would not actually be able to carry the full
traffic demand matrix given in Fig. 2 (c) but only 90% of it.

There are three ways to increase Leffective. First, one can
reduce tsetup by using a faster switch. Second, one can in-
crease tstable at the cost of increased host buffer require-
ments. Third, one can increase the nominal link rate, L. This
third option is especially attractive given technologies such
as WDM that can place tens of 10 Gb/s channels on the same
physical link. If the traffic demand is less thanLeffective, then
100% of the traffic can be routed over the circuit-switched
network. But once the traffic demand exceeds Leffective, the
circuit switch has become a bottleneck and we would have
to route some traffic over the electronic packet-switched net-
work or suffer a performance penalty.

2.2 Host Buffer Requirements
Traffic destined to hosts in the same pod is called pod-

local traffic. Since pod-local traffic does not transit the cir-
cuit switch, we have the option of treating it as a special case
in our analysis of host buffer requirements. However, we
choose to simplify the analysis by not modeling pod-local
traffic and leave this optimization to future work.

Each host in each pod maintains a set of N virtual out-
put queues (VOQs) [12], one for every destination pod, in-
cluding the host’s own pod. All traffic generated by a host
first goes to one of these queues. There can be additional
queueing disciplines within a host to support arbitrary traffic
engineering policies, but ultimately we assume traffic ends
up in these VOQs before transmission. When a circuit is es-
tablished, all traffic destined for that particular destination is
drained from the respective queue. Fig. 3 shows the buffer
occupancies of these VOQs of a single host in pod 1 from a
cold start, in units of T . In less than one complete scheduling
period a host has filled its VOQs to the steady-state level, in
this case 28T . A particular queue fills at a rate given by the
traffic demand matrix until a circuit is established to the ap-
propriate destination, then the queue is drained completely

at precisely the time for the next switch reconfiguration, so
that there are no standing queues. It is important to note that
this example is for completely uniform all-to-all traffic; for
other traffic demand matrices, the buffers will fill at differ-
ent rates, but the circuit switch schedule should be chosen
so that the queues are completely drained each scheduling
period.

For an all-to-all workload with N pods, an effective link
rate of Leffective bits per second, and uniform time slots of
duration tslot seconds, the amount of buffering required by
each host in bits is given by

B = Leffective(N − 1)tslot (2)

From (2) we can immediately see why the tsetup of 27 ms
reported by Helios [6, 7] makes TMS impractical for slow
millisecond-scale circuit switches. For 24 pods with 10 Gi-
gabit Ethernet, choosing T = 270 ms to achieve a 90% duty
cycle yields B = 7.23 GB per host. Currently this is an im-
practical amount of DRAM to dedicate to packet buffering.
Since Leffective and N are both likely to increase for future
data centers, the only way to make TMS practical is to de-
crease T by using microsecond-scale switching. Setting T =
100 µs yields B = 2.74 MB of buffering per host, which is
much more practical. Therefore we argue that TMS requires
microsecond-scale circuit switching.

3. TRAFFIC MATRIX SCHEDULING
ALGORITHM

In this section, we describe the TMS algorithm for arbi-
trary traffic demand matrices. Fig. 4 shows an example.

The TMS algorithm is divided into two phases. In phase 1,
the traffic demand matrix (TDM) is scaled into a bandwidth
allocation matrix (BAM). A TDM represents the amount of
traffic, in terms of percent of circuit switch link rate, that
the hosts in a source pod wish to transmit to the hosts in a
destination pod. A BAM represents the percentage of band-
width in a circuit switch and how it is allocated between
input-output port pairs over time. In a sense, the BAM is
typically “larger” than the TDM since it is not often that the
hosts completely drive the network at full utilization. This
notion of larger is captured mathematically by the theory
of stochastic matrices, even though there is nothing random
about our TDM and BAM. If no pod wishes to send more
than its link rate (its row sum is less than or equal to 1) and
no pod wishes to receive more than its link rate (its column
sum is less than or equal to 1), then we say that the TDM
is both admissible and doubly substochastic. The BAM is
called doubly stochastic because it has the further constraint
that its row sums and column sums are exactly equal to 1.
By scaling the TDM into a BAM, we are in some sense pre-
serving the demands of the senders and receivers, while also
satisfying the constraints of the circuit switch. A matrix scal-
ing algorithm such as Sinkhorn (1964) [13] can be used for
this purpose, even when the TDM is not admissible.

In phase 2, the BAM is decomposed into a circuit switch

3

Sinkhorn() Birkhoff()

0.375

0.156

0.601

0.832 0.212 0.182 0.183

0.708 0.9700.021

0.156 0.058 0.866

0.951 0.732 0.598 0.394 P1 0.144 P2 0.100 P3

0.089 P4 0.079 P5 0.067 P6

0.050 P7 0.043 P8 0.027 P9

0.009 P10

+
+
+

+
+

+
+

+ +
TDM

0.094

0.144

0.279

0.483 0.147 0.299 0.071

0.394 0.2990.027

0.173 0.152 0.531

0.286 0.521 0.100

BAM Schedule

Figure 4: Example run of the traffic matrix scheduling algorithm on a random TDM. In phase 1, the
Sinkhorn algorithm scales an inadmissible traffic demand matrix (TDM) into a bandwidth allocation
matrix (BAM). In phase 2, the Birkhoff-von Neumann algorithm decomposes the BAM into a circuit
switch schedule: a convex combination of permutation matrices (Pi) that sum to the BAM (see
equation 3).

schedule, which is a convex combination of permutation ma-
trices that sum to the original BAM

BAM =

k∑
i

ciPi (3)

where 0 ≤ i ≤ k, and k = N2 − 2N + 2. Each permuta-
tion matrix, Pi, represents a circuit switch assignment, and
each scalar coefficient, ci, represents a time slot duration, as
a percentage of the total schedule duration. One can use a
matrix decomposition algorithm such as Birkhoff-von Neu-
mann (1946) [2, 15], also known as BvN, to compute the
schedule. Phase 1 is necessary because BvN requires a dou-
bly stochastic matrix as input. In fact, the Birkhoff-von Neu-
mann theorem states that every doubly stochastic matrix has
such a decomposition.

3.1 Execution Time
We measured the execution time of the TMS algorithm

on a 2.66 GHz Intel Core 2 processor. The TMS algorithm
was tested with dense uniform random input matrices. In the
future we hope to evaluate with actual data center network
traces. Sinkhorn 1964 has a time complexity of O(N2).
Fig. 5 shows the measured execution time with input ma-
trices up to size 1024 × 1024. BvN has a time complexity
of O(N4.5). Fig. 6 shows the measured execution time with
small input matrices.

Our algorithms were implemented in Python for ease of
evaluation. Clearly there is an opportunity to improve the
runtime performance of these algorithms. Performance could
be expected to improve if implemented on a faster platform
such as (a) a multicore x86 64 platform with C code, (b) a
GPU accelerator platform such as NVIDIA CUDA, OpenCL,
or Microsoft’s DirectCompute, (c) a multicore integer plat-
form such as Broadcom’s XLP, or (d) an FPGA. Second,
there may be faster matrix decomposition algorithms, or faster
implementations of BvN. Third, we don’t yet know the size
of the input matrices required in real data center networks;
N could be 16, 64, or 1024. Finally, we evaluated using
dense uniform random matrices rather than sparse matrices.
It is likely that sparse matrices would allow opportunities for
performance speedup. For example, the Hopcroft-Karp al-

 0
4s
8s

 0 256 512 768 1024

Ex
ec

ut
io

n
Ti

m
e

Matrix Size (N x N)

Figure 5: Execution time of the Sinkhorn matrix
scaling algorithm.

 0
50s

100s
150s

 0 5 10 15 20 25 30 35

Ex
ec

ut
io

n
Ti

m
e

Matrix Size (N x N)

Figure 6: Execution time of the Birkhoff-von
Neumann matrix decomposition algorithm.

gorithm [9] used as a building block of BvN performs better
on sparse matrices than on dense matrices. However, given
that we do not yet have good data center network traffic mod-
els, we choose to limit our evaluation to uniform random
traffic.

3.2 Longest Time-Slot First Scheduling
Sometimes it may be better not to schedule all traffic over

the circuit switch and to simply schedule only the longest
time slots. The reason is that the BvN decomposition algo-
rithm will generate time slots of different lengths, some of
which can be quite short. Consider the schedule in Fig. 4.
The shortest time slot is only 0.9% of the entire schedule.
With such a short time slot, it is likely that tsetup will be so
large as a percentage that it would have been better to route
that traffic over the packet-switched network.

The greatest benefit comes from scheduling the first n
timeslots, where n is chosen based on both the minimum
required duty cycle, D, as well as the maximum allowed
schedule length, Tschedule. We extend our definition of D to

4

variable-length time slots as follows

Tsetup = ntsetup (4)

D =
Tstable

Tsetup + Tstable
=

Tstable

Tschedule
(5)

where n ≤ k is the number of time slots in the schedule,
and Tschedule is the duration of the entire schedule period.
This definition allows us to choose to schedule only the first
n time slots. Traffic that is not scheduled over the circuit-
switched network must transit the packet-switched network.
Using the example in Fig. 4, Table 1 shows the trade offs in
choosing the right number of time slots for the schedule.

Table 1: Example of trade offs between the
number of schedule time slots (n), the amount
of traffic sent over the circuit-switched network
(CSN) vs the packet-switched network (PSN),
and the duty cycle (D). tsetup = 10 µs, Tschedule

= 1 ms.

n CSN PSN D
0 0% 100.0% N/A
1 39.4% 60.6% 100.0%
2 53.8% 46.2% 98.0%
3 63.8% 36.2% 97.0%
4 72.7% 27.3% 96.0%
5 80.6% 19.4% 95.0%
6 87.3% 12.7% 94.0%
7 92.3% 7.7% 93.0%
8 96.6% 3.4% 92.0%
9 99.3% 0.7% 91.0%

10 100.0% 0% 90.0%

As the n increases, an increasing fraction of the total traf-
fic is routed over the circuit-switched network. In the limit
when n = k, all traffic is routed over the circuit-switched
network. However, the duty cycle decreases with increasing
n. This is because Tschedule is held constant, so Tstable must
decrease as Tsetup increases. For example, if the minimum
required duty cycle was 95%, then by setting n = 5, 80.6%
of the total traffic would be routed over circuit switches. Al-
ternatively, at the cost of increased host buffering, we could
increase Tschedule in order to increase n to 6 or 7 while keep-
ing the duty cycle at 95%.

4. IMPLEMENTATION
To evaluate our approach, we have designed and built a

microsecond-scale circuit switch called Mordia (Microsec-
ond Optical Research Datacenter Interconnect Architecture).
Mordia represents a single (but well-researched) point in the
design space, while TMS represents an approach to circuit
scheduling for hybrid data center networks that is especially
well suited to microsecond-scale circuit switches. Mordia
also acts as a testbed to evaluate concepts such as TMS with
real hardware and software.

Pod 1

Optical Ring

Pod 2 Pod 3 Pod N

Stations

Figure 7: The Mordia prototype is an op-
tical ring of wavelength-selective switches called
stations, approximately 2300x faster than the
optical space switches used in Helios and c-
Through (11.5 µs vs 27 ms).

Fig. 7 shows the high-level topology of Mordia: an op-
tical ring of stations, with each station terminating a pod.
Stations use wavelength-selective switching to route traffic
to other stations, and hence to other pods. The Mordia pro-
totype is a 24 × 24-port optical circuit switch (OCS) that
is three orders of magnitude faster than current commercial
OCS, with a nominal switching time of 2.8 µs, an effec-
tive switching time of 11.5 µs when accounting for end-to-
end hardware and software initialization delays, supporting
a minimum time slot duration of approximately 80 µs and
minimum duty cycle of 87.4%. The Mordia architecture can
scale to 704 ports with current commodity optical compo-
nents. Further details on the prototype can be found in re-
lated publications and the project website2.

The Mordia prototype allows us to uncover many differ-
ent aspects of TMS that were not salient in the equations
and algorithms. For example, TMS assumes that all pods
are synchronized to the circuit switch, such that when the
circuit switch undergoes reconfiguration to implement the
next circuit assignment in the schedule, all pods will imme-
diately stop transmitting, wait, and then begin transmitting
from the next VOQ. This is nontrivial at microsecond time
scales. However, our working prototype shows that it is in-
deed possible to support microsecond-scale circuit switching
over commodity Ethernet technology.

5. RELATED WORK
Recent work by Wang et al. [16, 17] on c-Through has

proposed to treat the data center network as a single vir-
tual output queued switch by buffering traffic on hosts and
then transmitting via a bufferless crossbar circuit switch. c-
Through uses these host buffers to estimate the inter-rack
traffic demand matrix, and then relies on a max-weighted as-
signment on the circuit switch to maximize network through-
put. Although operating at a pod-level rather than host/rack-
level, Helios [7] also performs demand estimation, and then
uses max-weighted assignment to choose circuits. Both of
these fully functional hybrid data center network prototypes
use HSS. In both systems, the traffic demand matrix is esti-
mated, then communicated to a central point where the max-

2http://mordia.net

5

weighted assignment algorithm is executed, at which point
the schedule is distributed back to the circuit switches and
top-of-rack/pod switches for execution, all of which take a
significant amount of time and reside on the critical path for
circuit reconfiguration.

TMS leverages several observations made in Flyways [8,
10], showing that for many realistic deployments, such as
MapReduce, there is some degree of stability in the rate of
change of the traffic demand matrix. In addition, the traffic
demand matrix is often sparse, which is good for the algo-
rithms presented in this paper. Finally, the notion of focus-
ing on the traffic demand matrix as an input to a centralized
scheduler was inspired by the heat maps in Flyways.

Bazzaz et al. [1] enumerate limitations of circuit switch-
ing, such as the need to support correlated flows within an
application in the context of realistic data center workloads.
They suggest augmenting the central controller with addi-
tional application semantics, and using OpenFlow [11] to
provide a richer control plane.

HSS uses “one loop” to both compute and execute the
schedule, whereas TMS uses “two loops”, one for compu-
tation and one for execution. Vattikonda et al. [14] pursue
a similar two-level approach, with a slower-running central
scheduler relying on very fast running TDMA in switches,
however in the context of wireline data center networks.

We are not the first to suggest using the Birkhoff-von Neu-
mann decomposition algorithm to compute schedules for in-
put queued switches [3, 4]. Previous work focused on cross-
bar scheduling for packet switches, whereas this paper fo-
cuses on circuit switch scheduling for data center networks
with packet buffers distributed among the hosts.

6. CONCLUSION
In this paper, we described traffic matrix scheduling, a

technique for scheduling circuit switches to route potentially
all bulk data center traffic, not just traffic from hotspots. This
makes circuit switches much more useful than previously
thought. In fact, the advantages of circuit switching com-
pared to packet switching, namely (i) CAPEX and OPEX
reduction, (ii) low latency, (iii) no jitter, and (iv) the abil-
ity to scale the nominal link rate to hundreds of Gb/s per
link, make circuit switching a viable contender for future
data center network architectures.

Acknowledgements
We would like to thank Ronald Graham, Bill Lin, our shep-
herd Atul Adya, and our reviewers, for their valuable feed-
back. We received support from the National Science Foun-
dation through CIAN NSF ERC under grant #EEC-0812072.

7. REFERENCES
[1] H. H. Bazzaz, M. Tewari, G. Wang, G. Porter,

T. S. E. Ng, D. G. Andersen, M. Kaminsky, M. A.
Kozuch, and A. Vahdat. Switching the Optical Divide:
Fundamental Challenges for Hybrid Electrical/Optical
Datacenter Networks. In SoCC ’12.

[2] G. Birkhoff. Tres Observaciones Sobre el Algebra
Lineal. Univ. Nac. Tucumán Rev. Ser. A, 5:147–151,
1946.

[3] C. Chang, W. Chen, and H. Huang. On Service
Guarantees for Input-buffered Crossbar Switches: A
Capacity Decomposition Approach by Birkhoff and
von Neumann. In Intl. Workshop on Quality of
Service (IWQoS ’99).

[4] C. Chang, D. Lee, and Y. Jou. Load Balanced
Birkhoff–von Neumann Switches, Part I: One-stage
Buffering. Computer Communications, 25(6):611–622,
2002.

[5] K. Chen, A. Singla, A. Singh, K. Ramachandran,
L. Xu, Y. Zhang, and X. Wen. OSA: An Optical
Switching Architecture for Data Center Networks with
Unprecedented Flexibility. In NSDI ’12.

[6] N. Farrington, Y. Fainman, H. Liu, G. Papen, and
A. Vahdat. Hardware Requirements for Optical
Circuit Switched Data Center Networks. In
OFC/NFOEC, Los Angeles, Mar. 2011.

[7] N. Farrington, G. Porter, S. Radhakrishnan, H. H.
Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and
A. Vahdat. Helios: A Hybrid Electrical/Optical
Switch Architecture for Modular Data Centers. In
SIGCOMM ’10.

[8] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and
D. Wetherall. Augmenting Data Center Networks with
Multi-Gigabit Wireless Links. In SIGCOMM ’11.

[9] J. Hopcroft and R. Karp. An n5/2 Algorithm for
Maximum Matchings in Bipartite Graphs. SIAM
Journal on Computing, 2(4):225–231, 1973.

[10] S. Kandula, J. Padhye, and P. Bahl. Flyways to
Decongest Data Center Networks. HotNets ’09.

[11] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. OpenFlow: Enabling Innovation in Campus
Networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, Mar. 2008.

[12] N. McKeown, A. Mekkittikul, V. Anantharam, and
J. Walrand. Achieving 100% Throughput in an
Input-queued Switch. Communications, IEEE
Transactions on, 47(8):1260–1267, 1999.

[13] R. Sinkhorn. A Relationship Between Arbitrary
Positive Matrices and Doubly Stochastic Matrices.
The Annals of Mathematical Statistics, 35(2):876–879,
1964.

[14] B. C. Vattikonda, G. Porter, A. Vahdat, and A. C.
Snoeren. Practical TDMA for Datacenter Ethernet.
ACM EuroSys ’12.

[15] J. von Neumann. A Certain Zero-sum Two-person
Game Equivalent to the Optimal Assignment Problem.
Contributions to the Theory of Games, 2:5–12, 1953.

[16] G. Wang, D. Andersen, M. Kaminsky, M. Kozuch,
T. Ng, K. Papagiannaki, M. Glick, and L. Mummert.
Your Data Center is a Router: The Case for
Reconfigurable Optical Circuit Switched Paths. In
HotNets ’09.

[17] G. Wang, D. G. Andersen, M. Kaminsky,
K. Papagiannaki, T. S. E. Ng, M. Kozuch, and
M. Ryan. c-Through: Part-time Optics in Data
Centers. In SIGCOMM ’10.

[18] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar,
A. Vahdat, B. Y. Zhao, and H. Zheng. Mirror Mirror
on the Ceiling: Flexible Wireless Links for Data
Centers. In SIGCOMM ’12.

6

